Metabolomics reveals metabolites associated with hair follicle cycle in cashmere goats

Autor: Shengchao Ma, Wenzhi Cao, Xiaolin Ma, Xiaofang Ye, Chongkai Qin, Bin Li, Wenna Liu, Qingwei Lu, Cuiling Wu, Xuefeng Fu
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: BMC Veterinary Research, Vol 20, Iss 1, Pp 1-20 (2024)
Druh dokumentu: article
ISSN: 1746-6148
DOI: 10.1186/s12917-024-04057-0
Popis: Abstract Background The hair follicle is a skin accessory organ that regulates hair development, and its activity varies on a regular basis. However, the significance of metabolites in the hair follicle cycle has long been unknown. Results Targeted metabolomics was used in this investigation to reveal the expression patterns of 1903 metabolites in cashmere goat skin during anagen to telogen. A statistical analysis was used to investigate the potential associations between metabolites and the hair follicle cycle. The findings revealed clear changes in the expression patterns of metabolites at various phases and in various feeding models. The majority of metabolites (primarily amino acids, nucleotides, their metabolites, and lipids) showed downregulated expression from anagen (An) to telogen (Tn), which was associated with gene expression, protein synthesis and transport, and cell structure, which reflected, to some extent, that the cells associated with hair follicle development are active in An and apoptotic in An–Tn. It is worth mentioning that the expression of vitamin D3 and 3,3’,5-triiodo-L-thyronine decreased and then increased, which may be related to the shorter and longer duration of outdoor light, which may stimulate the hair follicle to transition from An to catagen (Cn). In the comparison of different hair follicle development stages (An, Cn, and Tn) or feeding modes (grazing and barn feeding), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that common differentially expressed metabolites (DEMs) (2’-deoxyadenosine, L-valine, 2’-deoxyuridine, riboflavin, cytidine, deoxyguanosine, L-tryptophan, and guanosine-5’-monophosphate) were enriched in ABC transporters. This finding suggested that this pathway may be involved in the hair follicle cycle. Among these DEMs, riboflavin is absorbed from food, and the expression of riboflavin and sugars (D-glucose and glycogen) in skin tissue under grazing was greater and lower than that during barn feeding, respectively, suggesting that eating patterns may also alter the hair follicle cycle. Conclusions The expression patterns of metabolites such as sugars, lipids, amino acids, and nucleotides in skin tissue affect hair follicle growth, in which 2’-deoxyadenosine, L-valine, 2’-deoxyuridine, riboflavin, cytidine, deoxyguanosine, L-tryptophan, and guanosine-5’-monophosphate may regulate the hair follicle cycle by participating in ABC transporters. Feeding practices may regulate hair follicle cycles by influencing the amount of hormones and vitamins expressed in the skin of cashmere goats.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje