Autor: |
Qilong Wang, Kai Liu, Xia Cao, Wanjin Rong, Wenwan Shi, Qintong Yu, Wenwen Deng, Jiangnan Yu, Ximing Xu |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Bioengineering & Translational Medicine, Vol 9, Iss 4, Pp n/a-n/a (2024) |
Druh dokumentu: |
article |
ISSN: |
2380-6761 |
DOI: |
10.1002/btm2.10646 |
Popis: |
Abstract Plant‐derived exosomes (PEs) possess an array of therapeutic properties, including antitumor, antiviral, and anti‐inflammatory capabilities. They are also implicated in defensive responses to pathogenic attacks. Spinal cord injuries (SCIs) regeneration represents a global medical challenge, with appropriate research concentration on three pivotal domains: neural regeneration promotion, inflammation inhibition, and innovation and application of regenerative scaffolds. Unfortunately, the utilization of PE in SCI therapy remains unexplored. Herein, we isolated PE from the traditional Chinese medicinal herb, Lycium barbarum L. and discovered their inflammatory inhibition and neuronal differentiation promotion capabilities. Compared with exosomes derived from ectomesenchymal stem cells (EMSCs), PE demonstrated a substantial enhancement in neural differentiation. We encapsulated isoliquiritigenin (ISL)‐loaded plant‐derived exosomes (ISL@PE) from L. barbarum L. within a 3D‐printed bionic scaffold. The intricate construct modulated the inflammatory response following SCI, facilitating the restoration of damaged axons and culminating in ameliorated neurological function. This pioneering investigation proposes a novel potential route for insoluble drug delivery via plant exosomes, as well as SCI repair. The institutional animal care and use committee number is UJS‐IACUC‐2020121602. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|