Popis: |
One of the main climate change-related variables limiting agricultural productivity that ultimately leads to food insecurity appears to be drought. With the use of a recently discovered nanopriming technology, seeds can endure various abiotic challenges. To improve seed quality and initial growth of 8-day-old field pea seedlings (cv. NS Junior) under optimal and artificial drought (PEG-induced) laboratory conditions, this study aimed to assess the efficacy of priming with three different nanomaterials: Nanoplant Ultra (Co, Mn, Cu, Fe, Zn, Mo, and Se), Nanoplant Ca-Si (Ca, Si, B, and Fe), and Nanoplant Sulfur (S). The findings indicate that nanopriming seed treatments have a positive impact on seed quality indicators, early plant growth, and drought resilience in field pea plants established in both optimal and drought-stressed conditions. Nevertheless, all treatments showed a positive effect, but their modes of action varied. Nanoplant Ultra proved to be the most effective under optimal conditions, whereas Nanoplant Ca-Si and Nanoplant Sulfur were the most efficient under drought stress. After a field evaluation, the examined comprehensive nanomaterials may be utilized as priming agents for pea seed priming to boost seed germination, initial plant growth, and crop productivity under various environmental conditions. |