Autor: |
Anna Maria Sobczak, Bartosz Bohaterewicz, Anna Ceglarek, Aleksandra Zyrkowska, Magdalena Fafrowicz, Agnieszka Slowik, Marcin Wnuk, Monika Marona, Klaudia Nowak, Kamila Zur-Wyrozumska, Tadeusz Marek |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Frontiers in Human Neuroscience, Vol 16 (2022) |
Druh dokumentu: |
article |
ISSN: |
1662-5161 |
DOI: |
10.3389/fnhum.2022.852981 |
Popis: |
BackgroundFatigue is one of the most common symptoms of multiple sclerosis (MS), significantly affecting the functioning of the patients. However, the neural underpinnings of physical and mental fatigue in MS are still vague. The aim of our study was to investigate the functional architecture of resting-state networks associated with fatigue in patients with MS.MethodsThe sum of 107 high-functioning patients underwent a resting-state scanning session and filled out the 9-item Fatigue Severity Scale (FSS). Based on the FSS score, we identified patients with different levels of fatigue using the cluster analysis. The low-fatigue group consisted of n = 53 subjects, while the high-fatigue group n = 48. The neuroimaging data were analyzed in terms of functional connectivity (FC) between various resting-state networks as well as amplitude of low-frequency fluctuation (ALFF) and fractional amplitude of low-frequency fluctuations (fALFF).ResultsTwo-sample t-test revealed between-group differences in FC of posterior salience network (SN). No differences occurred in default mode network (DMN) and sensorimotor network (SMN). Moreover, differences in fALFF were shown in the right middle frontal gyrus and right superior frontal gyrus, however, no ALFF differences took place.ConclusionCurrent study revealed significant functional network (FN) architecture between-group differences associated with fatigue. Present results suggest the higher level of fatigue is related to deficits in awareness as well as higher interoceptive awareness and nociception. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|