N(κ)-paracontact metric manifolds admitting the Fischer-Marsden conjecture

Autor: Sudhakar Kumar Chaubey, Meraj Ali Khan, Amna Salim Rashid Al Kaabi
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: AIMS Mathematics, Vol 9, Iss 1, Pp 2232-2243 (2024)
Druh dokumentu: article
ISSN: 2473-6988
DOI: 10.3934/math.2024111?viewType=HTML
Popis: We characterize $ N(\kappa) $-paracontact metric manifolds (NKPMM) $ M^{2n+1} $ satisfying the Fischer-Marsden conjecture. We demostrate that, if an $ M^{2n+1} $ satisfies the Fischer-Marsden equation, then either $ M^{2n+1} $ with $ \kappa > -1 $ is a non-Einstein manifold or $ M^{2n+1} $ is locally isometric to $ \mathbb{E}^{n+1} \times \mathbb{H}^{n}(-4) $ for $ n > 1 $. For the $ 3 $-dimensional case, we show that $ M^3 $ is an Einstein manifold.
Databáze: Directory of Open Access Journals