Autor: |
Sudhakar Kumar Chaubey, Meraj Ali Khan, Amna Salim Rashid Al Kaabi |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
AIMS Mathematics, Vol 9, Iss 1, Pp 2232-2243 (2024) |
Druh dokumentu: |
article |
ISSN: |
2473-6988 |
DOI: |
10.3934/math.2024111?viewType=HTML |
Popis: |
We characterize $ N(\kappa) $-paracontact metric manifolds (NKPMM) $ M^{2n+1} $ satisfying the Fischer-Marsden conjecture. We demostrate that, if an $ M^{2n+1} $ satisfies the Fischer-Marsden equation, then either $ M^{2n+1} $ with $ \kappa > -1 $ is a non-Einstein manifold or $ M^{2n+1} $ is locally isometric to $ \mathbb{E}^{n+1} \times \mathbb{H}^{n}(-4) $ for $ n > 1 $. For the $ 3 $-dimensional case, we show that $ M^3 $ is an Einstein manifold. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|