Using present-day observations to detect when anthropogenic change forces surface ocean carbonate chemistry outside preindustrial bounds

Autor: A. J. Sutton, C. L. Sabine, R. A. Feely, W.-J. Cai, M. F. Cronin, M. J. McPhaden, J. M. Morell, J. A. Newton, J.-H. Noh, S. R. Ólafsdóttir, J. E. Salisbury, U. Send, D. C. Vandemark, R. A. Weller
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: Biogeosciences, Vol 13, Iss 17, Pp 5065-5083 (2016)
Druh dokumentu: article
ISSN: 1726-4170
1726-4189
DOI: 10.5194/bg-13-5065-2016
Popis: One of the major challenges to assessing the impact of ocean acidification on marine life is detecting and interpreting long-term change in the context of natural variability. This study addresses this need through a global synthesis of monthly pH and aragonite saturation state (Ωarag) climatologies for 12 open ocean, coastal, and coral reef locations using 3-hourly moored observations of surface seawater partial pressure of CO2 and pH collected together since as early as 2010. Mooring observations suggest open ocean subtropical and subarctic sites experience present-day surface pH and Ωarag conditions outside the bounds of preindustrial variability throughout most, if not all, of the year. In general, coastal mooring sites experience more natural variability and thus, more overlap with preindustrial conditions; however, present-day Ωarag conditions surpass biologically relevant thresholds associated with ocean acidification impacts on Mytilus californianus (Ωarag Crassostrea gigas (Ωarag Mya arenaria larvae in the Gulf of Maine (Ωarag arag = 1. Global and regional models and data syntheses of ship-based observations tended to underestimate seasonal variability compared to mooring observations. Efforts such as this to characterize all patterns of pH and Ωarag variability and change at key locations are fundamental to assessing present-day biological impacts of ocean acidification, further improving experimental design to interrogate organism response under real-world conditions, and improving predictive models and vulnerability assessments seeking to quantify the broader impacts of ocean acidification.
Databáze: Directory of Open Access Journals