An improvement to the John-Nirenberg inequality for functions in critical Sobolev spaces

Autor: Martínez Ángel D., Spector Daniel
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Advances in Nonlinear Analysis, Vol 10, Iss 1, Pp 877-894 (2020)
Druh dokumentu: article
ISSN: 2191-9496
2191-950X
DOI: 10.1515/anona-2020-0157
Popis: It is known that functions in a Sobolev space with critical exponent embed into the space of functions of bounded mean oscillation, and therefore satisfy the John-Nirenberg inequality and a corresponding exponential integrability estimate. While these inequalities are optimal for general functions of bounded mean oscillation, the main result of this paper is an improvement for functions in a class of critical Sobolev spaces. Precisely, we prove the inequality
Databáze: Directory of Open Access Journals