An improvement to the John-Nirenberg inequality for functions in critical Sobolev spaces
Autor: | Martínez Ángel D., Spector Daniel |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Advances in Nonlinear Analysis, Vol 10, Iss 1, Pp 877-894 (2020) |
Druh dokumentu: | article |
ISSN: | 2191-9496 2191-950X |
DOI: | 10.1515/anona-2020-0157 |
Popis: | It is known that functions in a Sobolev space with critical exponent embed into the space of functions of bounded mean oscillation, and therefore satisfy the John-Nirenberg inequality and a corresponding exponential integrability estimate. While these inequalities are optimal for general functions of bounded mean oscillation, the main result of this paper is an improvement for functions in a class of critical Sobolev spaces. Precisely, we prove the inequality |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |