Autor: |
Konstantinos Mamis |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Examples and Counterexamples, Vol 2, Iss , Pp 100077- (2022) |
Druh dokumentu: |
article |
ISSN: |
2666-657X |
DOI: |
10.1016/j.exco.2022.100077 |
Popis: |
We extend Stein’s lemma for averages that explicitly contain the Gaussian random variable at a power. We present two proofs for this extension of Stein’s lemma, with the first being a rigorous proof by mathematical induction. The alternative, second proof is a constructive formal derivation in which we express the average not as an integral, but as the action of a pseudodifferential operator defined via the Gaussian moment-generating function. In extended Stein’s lemma, the absolute values of the coefficients of the probabilist’s Hermite polynomials appear, revealing yet another link between Hermite polynomials and normal distribution. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|