Existence and multiplicity of solutions for a Dirichlet problem involving perturbed p(x)-Laplacian operator

Autor: Aboubacar Abdou, Aboubacar Marcos
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: Electronic Journal of Differential Equations, Vol 2016, Iss 197,, Pp 1-19 (2016)
Druh dokumentu: article
ISSN: 1072-6691
Popis: In this article we study the existence of solutions for the Dirichlet problem $$\displaylines{ -\text{div}(| \nabla u |^{p(x)-2}\nabla u)+V(x)|u|^{q(x)-2}u =f(x,u)\quad \text{in }\Omega,\cr u=0\quad \text{on }\partial \Omega, }$$ where $\Omega$ is a smooth bounded domain in $\mathbb{R}^N$, V is a given function in a generalized Lebesgue space $L^{s(x)}(\Omega)$ and f(x,u) is a Caratheodory function which satisfies some growth condition. Using variational arguments based on "Fountain theorem" and "Dual Fountain theorem", we shall prove under appropriate conditions on the above nonhomogeneous quasilinear problem the existence of two sequences of weak solutions for this problem.
Databáze: Directory of Open Access Journals