Autor: |
Hai Zhu, Hengzhou Xu, Bo Zhang, Mengmeng Xu, Sifeng Zhu |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
IEEE Access, Vol 7, Pp 70654-70661 (2019) |
Druh dokumentu: |
article |
ISSN: |
2169-3536 |
DOI: |
10.1109/ACCESS.2019.2919686 |
Popis: |
We consider a low-density parity-check (LDPC) coded non-recursive Gaussian minimum shift keying (GMSK) scheme for space communications subject to low signal-to-noise ratio (SNR), limited power, and spectrum resources. First, we design a non-recursive continuous-phase encoder (NRCPE)-based GMSK modulator to alleviate the impact of the error propagation existed in a recursive CPE (RCPE)-based one. Then, a corresponding pilot-aided quasi-coherent demodulation algorithm (PA-QCDA) is developed for improving the performance of the non-coherent demodulation and the impact of the Doppler shift in the coherent demodulation, whose basic principle is that a modified Bahl, Cocke, Jelinek, and Raviv (BCJR) algorithm-based detection performs on the received signals with initial and ending trellis-states being determined using the very small pilot overhead. Finally, we choose proper modulation parameters for the NRCPE-based GMSK signaling according to the tradeoffs between power and spectral efficiency. The simulation results show that the proposed system using the PA-QCDA can achieve excellent performance and can also work well in the presence of the large Doppler shifts and some burst errors. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|