Fusion Methods for Face Presentation Attack Detection

Autor: Faseela Abdullakutty, Pamela Johnston, Eyad Elyan
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Sensors, Vol 22, Iss 14, p 5196 (2022)
Druh dokumentu: article
ISSN: 1424-8220
DOI: 10.3390/s22145196
Popis: Face presentation attacks (PA) are a serious threat to face recognition (FR) applications. These attacks are easy to execute and difficult to detect. An attack can be carried out simply by presenting a video, photo, or mask to the camera. The literature shows that both modern, pre-trained, deep learning-based methods, and traditional hand-crafted, feature-engineered methods have been effective in detecting PAs. However, the question remains as to whether features learned in existing, deep neural networks sufficiently encompass traditional, low-level features in order to achieve optimal performance on PA detection tasks. In this paper, we present a simple feature-fusion method that integrates features extracted by using pre-trained, deep learning models with more traditional colour and texture features. Extensive experiments clearly show the benefit of enriching the feature space to improve detection rates by using three common public datasets, namely CASIA, Replay Attack, and SiW. This work opens future research to improve face presentation attack detection by exploring new characterizing features and fusion strategies.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje