Autor: |
Sámuel G Balogh, Dániel Zagyva, Péter Pollner, Gergely Palla |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
PLoS ONE, Vol 14, Iss 8, p e0220648 (2019) |
Druh dokumentu: |
article |
ISSN: |
1932-6203 |
DOI: |
10.1371/journal.pone.0220648 |
Popis: |
Hierarchical organisation is a prevalent feature of many complex networks appearing in nature and society. A relating interesting, yet less studied question is how does a hierarchical network evolve over time? Here we take a data driven approach and examine the time evolution of the network between the Medical Subject Headings (MeSH) provided by the National Center for Biotechnology Information (NCBI, part of the U. S. National Library of Medicine). The network between the MeSH terms is organised into 16 different, yearly updated hierarchies such as "Anatomy", "Diseases", "Chemicals and Drugs", etc. The natural representation of these hierarchies is given by directed acyclic graphs, composed of links pointing from nodes higher in the hierarchy towards nodes in lower levels. Due to the yearly updates, the structure of these networks is subject to constant evolution: new MeSH terms can appear, terms becoming obsolete can be deleted or be merged with other terms, and also already existing parts of the network may be rewired. We examine various statistical properties of the time evolution, with a special focus on the attachment and detachment mechanisms of the links, and find a few general features that are characteristic for all MeSH hierarchies. According to the results, the hierarchies investigated display an interesting interplay between non-uniform preference with respect to multiple different topological and hierarchical properties. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|