Fractional calculus, zeta functions and Shannon entropy

Autor: Guariglia Emanuel
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Open Mathematics, Vol 19, Iss 1, Pp 87-100 (2021)
Druh dokumentu: article
ISSN: 2391-5455
DOI: 10.1515/math-2021-0010
Popis: This paper deals with the fractional calculus of zeta functions. In particular, the study is focused on the Hurwitz ζ\zeta function. All the results are based on the complex generalization of the Grünwald-Letnikov fractional derivative. We state and prove the functional equation together with an integral representation by Bernoulli numbers. Moreover, we treat an application in terms of Shannon entropy.
Databáze: Directory of Open Access Journals