Autor: |
Máté Lencsés, Alessio Miscioscia, Giuseppe Mussardo, Gábor Takács |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Journal of High Energy Physics, Vol 2024, Iss 8, Pp 1-32 (2024) |
Druh dokumentu: |
article |
ISSN: |
1029-8479 |
DOI: |
10.1007/JHEP08(2024)224 |
Popis: |
Abstract We revisit and extend Fisher’s argument for a Ginzburg-Landau description of multicritical Yang-Lee models in terms of a single boson Lagrangian with potential φ 2(iφ) n . We explicitly study the cases of n = 1, 2 by a Truncated Hamiltonian Approach based on the free massive boson perturbed by PT symmetric deformations, providing clear evidence of the spontaneous breaking of PT symmetry. For n = 1, the symmetric and the broken phases are separated by the critical point corresponding to the minimal model M 2 5 $$ \mathcal{M}\left(2,5\right) $$ , while for n = 2, they are separated by a critical manifold corresponding to the minimal model M 2 5 $$ \mathcal{M}\left(2,5\right) $$ with M 2 7 $$ \mathcal{M}\left(2,7\right) $$ on its boundary. Our numerical analysis strongly supports our Ginzburg-Landau descriptions for multicritical Yang-Lee models. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|