Rad-⊕-Supplemented Modules
Autor: | Türkmen Ergül |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2013 |
Předmět: | |
Zdroj: | Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica, Vol 21, Iss 1, Pp 225-237 (2013) |
Druh dokumentu: | article |
ISSN: | 1844-0835 2013-0015 |
DOI: | 10.2478/auom-2013-0015 |
Popis: | In this paper we provide various properties of Rad-⊕-supplemented modules. In particular, we prove that a projective module M is Rad- ⊕-supplemented if and only if M is ⊕-supplemented, and then we show that a commutative ring R is an artinian serial ring if and only if every left R-module is Rad-⊕-supplemented. Moreover, every left R-module has the property (P*) if and only if R is an artinian serial ring and J2 = 0, where J is the Jacobson radical of R. Finally, we show that every Rad-supplemented module is Rad-⊕-supplemented over dedekind domains. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |