New Bounds for Topological Indices on Trees through Generalized Methods

Autor: Álvaro Martínez-Pérez, José M. Rodríguez
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Symmetry, Vol 12, Iss 7, p 1097 (2020)
Druh dokumentu: article
ISSN: 2073-8994
DOI: 10.3390/sym12071097
Popis: Topological indices are useful for predicting the physicochemical behavior of chemical compounds. A main problem in this topic is finding good bounds for the indices, usually when some parameters of the graph are known. The aim of this paper is to use a unified approach in order to obtain several new inequalities for a wide family of topological indices restricted to trees and to characterize the corresponding extremal trees. The main results give upper and lower bounds for a large class of topological indices on trees, fixing or not the maximum degree. This class includes the first variable Zagreb, the Narumi–Katayama, the modified Narumi–Katayama and the Wiener index.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje