Autor: |
George Tzougas, Himchan Jeong |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Risks, Vol 9, Iss 1, p 19 (2021) |
Druh dokumentu: |
article |
ISSN: |
2227-9091 |
DOI: |
10.3390/risks9010019 |
Popis: |
This article presents the Exponential–Generalized Inverse Gaussian regression model with varying dispersion and shape. The EGIG is a general distribution family which, under the adopted modelling framework, can provide the appropriate level of flexibility to fit moderate costs with high frequencies and heavy-tailed claim sizes, as they both represent significant proportions of the total loss in non-life insurance. The model’s implementation is illustrated by a real data application which involves fitting claim size data from a European motor insurer. The maximum likelihood estimation of the model parameters is achieved through a novel Expectation Maximization (EM)-type algorithm that is computationally tractable and is demonstrated to perform satisfactorily. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|