Analysis of pedestrian second crossing behavior based on physics-informed neural networks

Autor: Yongqing Guo, Hai Zou, Fulu Wei, Qingyin Li, Dong Guo, Jahongir Pirov
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Scientific Reports, Vol 14, Iss 1, Pp 1-14 (2024)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-024-72155-y
Popis: Abstract Pedestrian two-stage crossings are common at large, busy signalized intersections with long crosswalks and high traffic volumes. This design aims to address pedestrian operation and safety by allowing navigation in two stages, negotiating each traffic direction separately. Understanding crosswalk behavior, especially during bidirectional interactions, is essential. This paper presents a two-stage pedestrian crossing model based on Physics-Informed Neural Networks (PINNs), incorporating fluid dynamics equations to determine characteristics such as speed, density, acceleration, and Reynolds number during crossings. The study shows that PINNs outperform traditional deep learning methods in calculating and predicting pedestrian fluid properties, achieving a mean squared error as low as 10–8. The model effectively captures dynamic pedestrian flow characteristics and provides insights into pedestrian behavior impacts. The results are significant for designing pedestrian facilities to ensure comfort and optimizing signal timing to enhance mobility and safety. Additionally, these findings can aid autonomous vehicles in better understanding pedestrian intentions in intelligent transportation systems.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje