Autor: |
Santiago Ruiz, Omar Danilo Castrillón, William Sarache |
Jazyk: |
English<br />Spanish; Castilian |
Rok vydání: |
2015 |
Předmět: |
|
Zdroj: |
Revista de Matemática: Teoría y Aplicaciones, Vol 22, Iss 1, Pp 113-134 (2015) |
Druh dokumentu: |
article |
ISSN: |
2215-3373 |
DOI: |
10.15517/rmta.v22i1.17558 |
Popis: |
This paper develops a methodology based on population genetics to improve the performance of two or more variables in job shop production systems. The methodology applies a genetic algorithm with special features in the individual selection when they pass from generation to generation. In comparison with the FIFO method, the proposed methodology showed better results in the variables makespan, idle time and energy cost. When compared with NSGA II, the methodology did not showed relevant differences in makespan and idle time; however better performance was obtained in energy cost and, especially, in the number of required iterations to get the optimal makespan. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|