Global behavior of a max-type system of difference equations of the second order with four variables and period-two parameters

Autor: Taixiang Sun, Guangwang Su, Bin Qin, Caihong Han
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: AIMS Mathematics, Vol 8, Iss 10, Pp 23941-23952 (2023)
Druh dokumentu: article
ISSN: 2473-6988
DOI: 10.3934/math.20231220?viewType=HTML
Popis: In this paper, we study global behavior of the following max-type system of difference equations of the second order with four variables and period-two parameters $ \left\{\begin{array}{ll}x_{n} = \max\Big\{A_n , \frac{z_{n-1}}{y_{n-2}}\Big\}, \ y_{n} = \max \Big\{B_n, \frac{w_{n-1}}{x_{n-2}}\Big\}, \ z_{n} = \max\Big\{C_n , \frac{x_{n-1}}{w_{n-2}}\Big\}, \ w_{n} = \max \Big\{D_n, \frac{y_{n-1}}{z_{n-2}}\Big\}, \ \end{array}\right. \ \ n\in \{0, 1, 2, \cdots\}, $ where $ A_n, B_n, C_n, D_n\in (0, +\infty) $ are periodic sequences with period 2 and the initial values $ x_{-i}, y_{-i}, z_{-i}, w_{-i}\in (0, +\infty)\ (1\leq i\leq 2) $. We show that if $ \min\{A_0C_1, B_0D_1, A_1C_0, B_1D_0\} < 1 $, then this system has unbounded solutions. Also, if $ \min\{A_0C_1, B_0D_1, A_1C_0, B_1D_0\}\geq 1 $, then every solution of this system is eventually periodic with period $ 4 $.
Databáze: Directory of Open Access Journals