Popis: |
Recent years, edge-cloud computing has attracted more and more attention due to benefits from the combination of edge and cloud computing. Task scheduling is still one of the major challenges for improving service quality and resource efficiency of edge-clouds. Though several researches have studied on the scheduling problem, there remains issues needed to be addressed for their applications, e.g., ignoring resource heterogeneity, focusing on only one kind of requests. Therefore, in this paper, we aim at providing a heterogeneity aware task scheduling algorithm to improve task completion rate and resource utilization for edge-clouds with deadline constraints. Due to NP-hardness of the scheduling problem, we exploit genetic algorithm (GA), one of the most representative and widely used meta-heuristic algorithms, to solve the problem considering task completion rate and resource utilization as major and minor optimization objectives, respectively. In our GA-based scheduling algorithm, a gene indicates which resource that its corresponding task is processed by. To improve the performance of GA, we propose to exploit a skew mutation operator where genes are associated to resource heterogeneity during the population evolution. We conduct extensive experiments to evaluate the performance of our algorithm, and results verify the performance superiority of our algorithm in task completion rate, compared with other thirteen classical and up-to-date scheduling algorithms. |