Autor: |
Omar Dhia Al-Hassawi, David Drake |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Energies, Vol 16, Iss 11, p 4371 (2023) |
Druh dokumentu: |
article |
ISSN: |
1996-1073 |
DOI: |
10.3390/en16114371 |
Popis: |
Energy demand for active mechanical space cooling is projected to double by 2050. Wider adoption of passive cooling systems can help reduce demand. However, familiarity with these systems remains low, and innovation in the field is constrained due to a lack of cost-effective, accessible performance evaluation methods. This paper reports the design, construction, and commissioning of an affordable, self-contained environmental test chamber. The novel chamber replicates a range of outdoor conditions common in hot, dry regions, making possible year-round testing of reduced-scale prototypes. Data from calibration testing are reported, showing no significant difference in evaporative efficiency when a reduced-scale prototype tested in the chamber is compared with datasets from prior full-scale testing. Analyzing the results using an independent sample two-tailed t-test with a 95% confidence interval found a p-value of 0.75. While measured outlet air velocities for reduced-scale and full-scale prototypes differed to some extent (root mean square error of 0.45 m/s), results were nevertheless deemed comparable due to errors introduced by the rapid change in wind speeds and directions at full scale. Future chamber modifications will correct misalignments between data collected from the two scales and prevent observed increases in the chamber’s relative humidity levels during testing. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|