Improving irrigation, crop, and soil management for sustainable soybean production in Southern Brazilian lowlands
Autor: | Robson Giacomeli, Reimar Carlesso, Mirta Teresinha Petry, Leonardo Chechi, Amauri Nelson Beutler, Fernando Sintra Fulaneti, Cassio Miguel Ferrazza |
---|---|
Jazyk: | English<br />Spanish; Castilian<br />Portuguese |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Scientia Agricola, Vol 79, Iss 6 (2021) |
Druh dokumentu: | article |
ISSN: | 1678-992X 1678-992x 12084751 |
DOI: | 10.1590/1678-992x-2021-0115 |
Popis: | ABSTRACT: Lowlands have been cultivated with irrigated rice (Oryza sativa) in a monoculture cropping system for more than a century in southern Brazil. Shallow topsoil with high bulk density and deficient water infiltration favors the of production paddy rice; however, this condition does not favor species non-tolerant to flooding or oxygen restriction. Thus, soil and irrigation management may be necessary to raise the rice-soybean (Glycine max) rotation systems to sustainable levels. We carried out a two-year field experiment to assess the effects of irrigation treatments and soil management on soil physical properties, soybean growth, and grain yield in lowland systems. The experiment comprised a randomized block design with two factors and three replications. The main factor comprised the following irrigation treatments: sprinkler; surface, and rainfed. Four soil managements composed the second factor: conventional tillage (CT), no-tillage (NT), conventional tillage with raised-seedbed, and no-tillage with raised-seedbed. Soil physical properties, soil penetration resistance, crop parameters, grain yield and water productivity were evaluated. CT increased the soil penetration resistance near the soil surface layer. The highest soil bulk density at the 0.05-0.10 m layer in the CT reduces grain yield in rainfed soybean compared to NT. Supplementary irrigation increased soybean yield of about 36 % in years of uneven rainfall distribution. Sprinkler irrigation resulted in higher irrigated water productivity (90 %) compared to surface irrigation, contributing to a more sustainable increase in grain yield. Crop rotation in a no-tillage cropping scheme could improve the sustainability of diversified agriculture in lowlands. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |