Concentration of blow-up solutions for the Gross-Pitaveskii equation
Autor: | Zhu Shihui |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Advances in Nonlinear Analysis, Vol 13, Iss 1, Pp 4317-4345 (2024) |
Druh dokumentu: | article |
ISSN: | 2191-950X 2024-0007 |
DOI: | 10.1515/anona-2024-0007 |
Popis: | We consider the blow-up solutions for the Gross-Pitaveskii equation modeling the attractive Boes-Einstein condensate. First, a new variational characteristic is established by computing the best constant of a generalized Gagliardo-Nirenberg inequality. Then, a lower bound on blow-up rate and a new concentration phenomenon of blow-up solutions are obtained in the L2{L}^{2} supercritical case. Finally, in the L2{L}^{2} critical case, a delicate limit of blow-up solutions is analyzed. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |