Autor: |
Patrick Reiser, Marlen Neubert, André Eberhard, Luca Torresi, Chen Zhou, Chen Shao, Houssam Metni, Clint van Hoesel, Henrik Schopmans, Timo Sommer, Pascal Friederich |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Communications Materials, Vol 3, Iss 1, Pp 1-18 (2022) |
Druh dokumentu: |
article |
ISSN: |
2662-4443 |
DOI: |
10.1038/s43246-022-00315-6 |
Popis: |
Graph neural networks are machine learning models that directly access the structural representation of molecules and materials. This Review discusses state-of-the-art architectures and applications of graph neural networks in materials science and chemistry, indicating a possible road-map for their further development. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|