Graph neural networks for materials science and chemistry

Autor: Patrick Reiser, Marlen Neubert, André Eberhard, Luca Torresi, Chen Zhou, Chen Shao, Houssam Metni, Clint van Hoesel, Henrik Schopmans, Timo Sommer, Pascal Friederich
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Communications Materials, Vol 3, Iss 1, Pp 1-18 (2022)
Druh dokumentu: article
ISSN: 2662-4443
DOI: 10.1038/s43246-022-00315-6
Popis: Graph neural networks are machine learning models that directly access the structural representation of molecules and materials. This Review discusses state-of-the-art architectures and applications of graph neural networks in materials science and chemistry, indicating a possible road-map for their further development.
Databáze: Directory of Open Access Journals