Autor: |
Desheng Hong |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
AIMS Mathematics, Vol 8, Iss 8, Pp 18163-18173 (2023) |
Druh dokumentu: |
article |
ISSN: |
2473-6988 |
DOI: |
10.3934/math.2023922?viewType=HTML |
Popis: |
Let $ G = (V, E) $ be a local finite connected weighted graph, $ \Omega $ be a finite subset of $ V $ satisfying $ \Omega^\circ\neq\emptyset $. In this paper, we study the nonexistence of the nonlinear wave equation $ \partial^2_t u = \Delta u + f(u) $ on $ G $. Under the appropriate conditions of initial values and nonlinear term, we prove that the solution for nonlinear wave equation blows up in a finite time. Furthermore, a numerical simulation is given to verify our results. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|