Blow-up of solutions for nonlinear wave equations on locally finite graphs

Autor: Desheng Hong
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: AIMS Mathematics, Vol 8, Iss 8, Pp 18163-18173 (2023)
Druh dokumentu: article
ISSN: 2473-6988
DOI: 10.3934/math.2023922?viewType=HTML
Popis: Let $ G = (V, E) $ be a local finite connected weighted graph, $ \Omega $ be a finite subset of $ V $ satisfying $ \Omega^\circ\neq\emptyset $. In this paper, we study the nonexistence of the nonlinear wave equation $ \partial^2_t u = \Delta u + f(u) $ on $ G $. Under the appropriate conditions of initial values and nonlinear term, we prove that the solution for nonlinear wave equation blows up in a finite time. Furthermore, a numerical simulation is given to verify our results.
Databáze: Directory of Open Access Journals