Nonlinear Spatiotemporal Viral Infection Model with CTL Immunity: Mathematical Analysis

Autor: Jaouad Danane, Karam Allali, Léon Matar Tine, Vitaly Volpert
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Mathematics, Vol 8, Iss 1, p 52 (2020)
Druh dokumentu: article
ISSN: 2227-7390
DOI: 10.3390/math8010052
Popis: A mathematical model describing viral dynamics in the presence of the latently infected cells and the cytotoxic T-lymphocytes cells (CTL), taking into consideration the spatial mobility of free viruses, is presented and studied. The model includes five nonlinear differential equations describing the interaction among the uninfected cells, the latently infected cells, the actively infected cells, the free viruses, and the cellular immune response. First, we establish the existence, positivity, and boundedness for the suggested diffusion model. Moreover, we prove the global stability of each steady state by constructing some suitable Lyapunov functionals. Finally, we validated our theoretical results by numerical simulations for each case.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje