Autor: |
Xu Cui, Kavimbi Chipusu, Muhammad Awais Ashraf, Mudassar Riaz, Jianbing Xiahou, Jianlong Huang |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Symmetry, Vol 16, Iss 7, p 920 (2024) |
Druh dokumentu: |
article |
ISSN: |
2073-8994 |
DOI: |
10.3390/sym16070920 |
Popis: |
This paper introduces a novel methodology for mitigating undesired oscillations in overhead crane systems used in material handling operations in the industry by leveraging Long Short-Term Memory (LSTM)-based Recurrent Neural Networks (RNNs). Oscillations during material transportation, particularly at the end location, pose safety risks and prolong carrying times. The methodology involves collecting sensor data from an overhead crane system, preprocessing the data, training an LSTM-based RNN model that incorporates symmetrical features, and integrating the model into a control algorithm. The control algorithm utilizes swing angle predictions from the symmetry-enhanced LSTM-based RNN model to dynamically adjust crane motion in real time, minimizing oscillations. Symmetry in this framework refers to the balanced and consistent handling of oscillatory data, ensuring that the model can generalize better across different scenarios and load conditions. The LSTM-based RNN model accurately predicts swing angles, enabling proactive control actions to be taken. Experimental validation demonstrates the effectiveness of the proposed approach, achieving an accuracy of approximately 98.6% in swing angle prediction. This innovative approach holds promise for transforming material transportation processes in industrial settings, enhancing operational safety, and optimizing efficiency. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|