Mass Formula for Self-Orthogonal and Self-Dual Codes over Non-Unital Rings of Order Four

Autor: Adel Alahmadi, Altaf Alshuhail, Rowena Alma Betty, Lucky Galvez, Patrick Solé
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Mathematics, Vol 11, Iss 23, p 4736 (2023)
Druh dokumentu: article
ISSN: 2227-7390
DOI: 10.3390/math11234736
Popis: We study the structure of self-orthogonal and self-dual codes over two non-unital rings of order four, namely, the commutative ring I=a,b|2a=2b=0,a2=b,ab=0 and the noncommutative ring E=a,b|2a=2b=0,a2=a,b2=b,ab=a,ba=b. We use these structures to give mass formulas for self-orthogonal and self-dual codes over these two rings, that is, we give the formulas for the number of inequivalent self-orthogonal and self-dual codes, of a given type, over the said rings. Finally, using the mass formulas, we classify self-orthogonal and self-dual codes over each ring, for small lengths and types.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje