Autor: |
Hien V. Nguyen, Katrin Campbell, Gavin F. Painter, Sarah L. Young, Greg F. Walker |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Data in Brief, Vol 35, Iss , Pp 106883- (2021) |
Druh dokumentu: |
article |
ISSN: |
2352-3409 |
DOI: |
10.1016/j.dib.2021.106883 |
Popis: |
Cytosine-phosphate-guanine (CpG) oligonucleotides are commonly-used vaccine adjuvants to promote the activation of antigen-presenting cells (APCs). To mount an effective immune response, CpG needs to be internalized and bind to its endosomal Toll-like receptor 9 (TLR-9) inside the APCs. Using flow cytometry and fluorescence microscopy, this article presents the cellular uptake data of the amino-dextran nanoparticle (aDNP) and aDNP loaded with CpG immobilized on its surface by either electrostatic adsorption or covalent conjugation. The uptake of fluorescently-labelled aDNPs by murine splenic dendritic cells and macrophages was determined by flow cytometry and uptake by murine bone-marrow-derived dendritic cells was evaluated by fluorescence microscopy. The data presented in this paper correlates with the in vitro immune-stimulatory activity observed for the two different CpG loading methods in the research article “Nanoparticle system based on amino-dextran as a drug delivery vehicle: immune-stimulatory CpG-oligonucleotide loading and delivery” (Nguyen et al., 2020) [1]. The data provide experimental evidence for a better understanding how the nanoparticle surface loading method of CpG influences the uptake of these nanoparticles by antigen-presenting cells as a step guide in the design of more effective vaccine formulations. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|