Autor: |
Yu Li, Xiaozhou Pan, Wenwei Luo, Yaser Gamalla, Zhan Ma, Pei Zhou, Chunfu Dai, Dingding Han |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Heliyon, Vol 10, Iss 11, Pp e31877- (2024) |
Druh dokumentu: |
article |
ISSN: |
2405-8440 |
DOI: |
10.1016/j.heliyon.2024.e31877 |
Popis: |
Tumor microenvironment (TME) is closely associated with the progression and prognosis of head and neck squamous cell carcinoma (HNSCC). To investigate potential biomarkers for predicting therapeutic outcomes in HNSCC, we analyzed the immune and stromal status of HNSCC based on the genes associated with TME using the ESTIMATE algorithm. Immune and stromal genes were identified with differential gene expression and weighted gene co-expression network analysis (WGCNA). From these genes, 118 were initially selected through Cox univariate regression and then further input into least absolute shrinkage and selection operator (LASSO) regression analysis. As a result, 11 genes were screened out for the TME-related risk (TMErisk) score model which presented promising overall survival predictive potential. The TMErisk score was negatively associated with immune and stromal scores but positively associated with tumor purity. Individuals with high TMErisk scores exhibited decreased expression of most immune checkpoints and all human leukocyte antigen family genes, and reduced abundance of infiltrating immune cells. Divergent genes were mutated in HNSCC. In both high and low TMErisk score groups, the tumor protein P53 exhibited the highest mutation frequency. A higher TMErisk score was found to be associated with reduced overall survival probability and worse outcomes of immunotherapy. Therefore, the TMErisk score could serve as a valuable model for the outcome prediction of HNSCC in clinic. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|