Characterization and evaluation of graphene oxide scaffold for periodontal wound healing of class II furcation defects in dog

Autor: Kawamoto K, Miyaji H, Nishida E, Miyata S, Kato A, Tateyama A, Furihata T, Shitomi K, Iwanaga T, Sugaya T
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: International Journal of Nanomedicine, Vol Volume 13, Pp 2365-2376 (2018)
Druh dokumentu: article
ISSN: 1178-2013
34139958
Popis: Kohei Kawamoto,1 Hirofumi Miyaji,1 Erika Nishida,1 Saori Miyata,1 Akihito Kato,1 Akito Tateyama,1 Tomokazu Furihata,1 Kanako Shitomi,1 Toshihiko Iwanaga,2 Tsutomu Sugaya1 1Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan; 2Department of Histology and Cytology, Faculty of Medicine, Hokkaido University, Sapporo, Japan Introduction: The 3-dimensional scaffold plays a key role in volume and quality of repair tissue in periodontal tissue engineering therapy. We fabricated a novel 3D collagen scaffold containing carbon-based 2-dimensional layered material, named graphene oxide (GO). The aim of this study was to characterize and assess GO scaffold for periodontal tissue healing of class II furcation defects in dog.Materials and methods: GO scaffolds were prepared by coating the surface of a 3D collagen sponge scaffold with GO dispersion. Scaffolds were characterized using cytotoxicity and tissue reactivity tests. In addition, GO scaffold was implanted into dog class II furcation defects and periodontal healing was investigated at 4 weeks postsurgery.Results: GO scaffold exhibited low cytotoxicity and enhanced cellular ingrowth behavior and rat bone forming ability. In addition, GO scaffold stimulated healing of dog class II furcation defects. Periodontal attachment formation, including alveolar bone, periodontal ligament-like tissue, and cementum-like tissue, was significantly increased by GO scaffold implantation, compared with untreated scaffold.Conclusion: The results suggest that GO scaffold is biocompatible and possesses excellent bone and periodontal tissue formation ability. Therefore, GO scaffold would be beneficial for periodontal tissue engineering therapy. Keywords: artificial collagen scaffold, cytotoxicity, nanocarbon, periodontal attachment, periodontal tissue engineering, rat cranial bone augmentation
Databáze: Directory of Open Access Journals