DESIGN OF THE CONTACT POTENTIALS DIFFERENCE PROBES

Autor: K. U. Pantsialeyeu, U. A. Mikitsevich, A. L. Zharin
Jazyk: English<br />Russian
Rok vydání: 2016
Předmět:
Zdroj: Pribory i Metody Izmerenij, Vol 7, Iss 1, Pp 7-15 (2016)
Druh dokumentu: article
ISSN: 2220-9506
2414-0473
DOI: 10.21122/2220-9506-2016-7-1-7-15
Popis: The contact potential difference probes distinguished by great variety and produced mostly in the laboratory for specific experimental applications. As a rule, they consist of commercially available instrumentation, and have a number of disadvantages: large dimensions, complexity and high cost, small sensitivity, operating speed, noiseproof, etc. The purpose of this paper is to describe the basic approaches to design of the small dimension, complete contact potential difference probes, providing high sensitivity, operating speed, and noise immunity. In this paper the contact potential difference probe, which is a electrometer with dynamic capacitor plate at about 0.1–5 mm2 . These probes are could be used in scanning systems, such as a Scanning Kelvin Probe, as well as for controlling system of manufacturing processes, e.g. under friction. The design of such contact potential difference probes conducted using modern electronic components, unique circuitry and design solutions described in detail at paper. The electromechanical modulator applied for mechanical vibrations of the reference sample. To provide a high amplitude and phase stability the upgraded generator with Wien bridge was used instead traditional oscillation sensor. The preamplifier made on the base of modern operational amplifiers with femtoampere current input. The power of the preamplifier designed with «floating ground». It allows keeping the relation constant potential to the probe components when changing over a wide range the compensation voltage. The phase detector-integrator based on the electronic antiphase switches with the modulation frequency of the contact potential difference and the integrator. Fullwave phase detection would greatly increase the sensitivity of the probe. In addition, the application of the phase detection allows suppressing noise and crosstalk at frequencies different from the modulation frequency. The preamplifier and the reference sample mounted on a flexible printed circuit board and the edge mechanically connected with a vibrator. Modulator, phase detector-integrator, and other electronic components placed on a separate board. This design contributes to reduce the influence of electromagnetic interference and noise as well as removing microphonic effects, etc.
Databáze: Directory of Open Access Journals