Effective simulation of flow in a moderately curved bend with a single short branch to support the design optimization of river-branch–plant configurations
Autor: | Xiaolong Song, Hai Huang, Youjun Chen, Haijue Xu, Yuchuan Bai |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Engineering Applications of Computational Fluid Mechanics, Vol 16, Iss 1, Pp 1420-1443 (2022) |
Druh dokumentu: | article |
ISSN: | 19942060 1997-003X 1994-2060 |
DOI: | 10.1080/19942060.2022.2093276 |
Popis: | The initial space settings of suitable environments for plants strongly affect the mutual feedback evolution of the river landscape and terrestrial plants. Thus, based on the morphological characteristics of newly-defined systematic out-branching channels in nature, this study performs an effective simulation of the flow of a designed moderately curved bend with a single short branch. The practice-based channel curvatures and branch on–off conditions are controlled in ANSYS FLUENT. The results show that: (1) the core zone of the depth-averaged primary velocity excess is approximately inversely equivalent to the channel migration potential; (2) the existence of the branch can strongly promote the formation of a new core vorticity zone and the conflicting development of the inner-negative and outer-positive vorticity zone after the bifurcation site at the cross-sections; (3) the free-flowing branch can greatly diminish the downstream helical flow strength; overall, the variation tendency of the ratio of helical flow strength to discharge squared is immune to the small range of change in stable inflow; and (4) the downstream channel is a strongly erosive region with the branch outlet closed, judging by the shear stress distribution; otherwise, it is a deposition region. The findings lay the groundwork for harmonious optimization of branch and plant configurations in river-bend systems. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |