$F$-SIGNATURE UNDER BIRATIONAL MORPHISMS

Autor: LINQUAN MA, THOMAS POLSTRA, KARL SCHWEDE, KEVIN TUCKER
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Forum of Mathematics, Sigma, Vol 7 (2019)
Druh dokumentu: article
ISSN: 2050-5094
DOI: 10.1017/fms.2019.6
Popis: We study $F$-signature under proper birational morphisms $\unicode[STIX]{x1D70B}:Y\rightarrow X$, showing that $F$-signature strictly increases for small morphisms or if $K_{Y}\leqslant \unicode[STIX]{x1D70B}^{\ast }K_{X}$. In certain cases, we can even show that the $F$-signature of $Y$ is at least twice as that of $X$. We also provide examples of $F$-signature dropping and Hilbert–Kunz multiplicity increasing under birational maps without these hypotheses.
Databáze: Directory of Open Access Journals