Persistent transcendental Bézout theorems

Autor: Lev Buhovsky, Iosif Polterovich, Leonid Polterovich, Egor Shelukhin, Vukašin Stojisavljević
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Forum of Mathematics, Sigma, Vol 12 (2024)
Druh dokumentu: article
ISSN: 2050-5094
DOI: 10.1017/fms.2024.49
Popis: An example of Cornalba and Shiffman from 1972 disproves in dimension two or higher a classical prediction that the count of zeros of holomorphic self-mappings of the complex linear space should be controlled by the maximum modulus function. We prove that such a bound holds for a modified coarse count inspired by the theory of persistence modules originating in topological data analysis.
Databáze: Directory of Open Access Journals