Autor: |
Zhenyuan Lin, Kuan Liu, Tun Cao, Minghui Hong |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Opto-Electronic Advances, Vol 6, Iss 6, Pp 1-10 (2023) |
Druh dokumentu: |
article |
ISSN: |
2096-4579 |
DOI: |
10.29026/oea.2023.230029 |
Popis: |
Creation of arbitrary features with high resolution is critically important in the fabrication of nano-optoelectronic devices. Here, sub-50 nm surface structuring is achieved directly on Sb2S3 thin films via microsphere femtosecond laser irradiation in far field. By varying laser fluence and scanning speed, nano-feature sizes can be flexibly tuned. Such small patterns are attributed to the co-effect of microsphere focusing, two-photons absorption, top threshold effect, and high-repetition-rate femtosecond laser-induced incubation effect. The minimum feature size can be reduced down to ~30 nm (λ/26) by manipulating film thickness. The fitting analysis between the ablation width and depth predicts that the feature size can be down to ~15 nm at the film thickness of ~10 nm. A nano-grating is fabricated, which demonstrates desirable beam diffraction performance. This nano-scale resolution would be highly attractive for next-generation laser nano-lithography in far field and in ambient air. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|