Autor: |
Xianpeng Fu, Zhichao Jiang, Jie Cao, Zefang Dong, Guoxu Liu, Meiling Zhu, Chi Zhang |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Microsystems & Nanoengineering, Vol 10, Iss 1, Pp 1-9 (2024) |
Druh dokumentu: |
article |
ISSN: |
2055-7434 |
DOI: |
10.1038/s41378-024-00676-7 |
Popis: |
Abstract Wind sensors have always played an irreplaceable role in environmental information monitoring and are expected to operate with lower power consumption to extend service lifetime. Here, we propose a breeze wake-up anemometer (B-WA) based on a rolling-bearing triboelectric nanogenerator (RB-TENG) with extremely low static power. The B-WA consists of two RB-TENGs, a self-waking-up module (SWM), a signal processing module (SPM), and a wireless transmission unit. The two RB-TENGs are employed for system activation and wind-speed sensing. Once the ambient wind-speed exceeds 2 m/s, the wake TENG (W-TENG) and the SWM can wake up the system within 0.96 s. At the same time, the SPM starts to calculate the signal frequency from the measured TENG (M-TENG) to monitor the wind speed with a sensitivity of 9.45 Hz/(m/s). After the wind stops, the SWM can switch off the B-WA within 0.52 s to decrease the system energy loss. In quiescent on-duty mode, the operating power of the B-WA is less than 30 nW, which can greatly extend the service lifetime of the B-WA. By integrating triboelectric devices and rolling bearings, this work has realized an ultralow quiescent power and self-waked-up wireless wind-speed monitoring system, which has foreseeable applications in remote weather monitoring, IoT nodes, and so on. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|