Autor: |
Han Gyeol Suh, Henri Menke, P. M. R. Brydon, Carsten Timm, Aline Ramires, Daniel F. Agterberg |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Physical Review Research, Vol 2, Iss 3, p 032023 (2020) |
Druh dokumentu: |
article |
ISSN: |
2643-1564 |
DOI: |
10.1103/PhysRevResearch.2.032023 |
Popis: |
Strontium ruthenate (Sr_{2}RuO_{4}) has long been thought to host a spin-triplet chiral p-wave superconducting state. However, the singletlike response observed in recent spin-susceptibility measurements casts serious doubts on this pairing state. Together with the evidence for broken time-reversal symmetry and a jump in the shear modulus c_{66} at the superconducting transition temperature, the available experiments point towards an even-parity chiral superconductor with k_{z}(k_{x}±ik_{y})-like E_{g} symmetry, which has consistently been dismissed based on the quasi-two-dimensional electronic structure of Sr_{2}RuO_{4}. Here, we show how the orbital degree of freedom can encode the two-component nature of the E_{g} order parameter, allowing for a local orbital-antisymmetric spin-triplet state that can be stabilized by on-site Hund's coupling. We find that this exotic E_{g} state can be energetically stable once a complete, realistic three-dimensional model is considered, within which momentum-dependent spin-orbit coupling terms are key. This state naturally gives rise to Bogoliubov Fermi surfaces. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|