Autor: |
Zhili Zhang, Aying Wan, Hongyan Lin |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Electronic Research Archive, Vol 31, Iss 4, Pp 1922-1947 (2023) |
Druh dokumentu: |
article |
ISSN: |
2688-1594 |
DOI: |
10.3934/era.2023099?viewType=HTML |
Popis: |
In this paper, the dynamical behaviors of a 2-component coupled diffusive system modeling hair follicle spacing is considered. For the corresponding ODEs, we not only consider the stability and instability of the unique positive equilibrium solutions, but also show the existence of unstable Hopf bifurcating periodic solutions. For the reaction-diffusion equations, we are mainly interested in the Turing instability of the positive equilibrium solution, as well as Hopf bifurcations and steady-state bifurcations. Our results showed that, under certain conditions, the reaction-diffusion system not only has Hopf bifurcating periodic solutions (both spatially homogeneous and non-homogeneous, all unstable), but it also has non-constant positive bifurcating equilibrium solutions. This allows for a clearer understanding of the mechanism for the spatiotemporal patterns of this particular system. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|