Popis: |
Poverty is the oldest social problem that ever existed and is difficult to reverse. It is multidimensional and unmeasurable. Thus, measuring by decomposing rural multidimensional poverty is critical. Most poverty studies are usually generic, exposed to large sampling errors, and intended for macroeconomic decisions. Thus, measuring poverty for a specific locality with various configurations is crucial for economic development. This work presents a processed and analyzed dataset from a huge community-based monitoring system of Goa, Camarines Sur. The local is situated in the poorest district, of the poorest province, in the poorest region of Luzon, Philippines. Research about poverty in this area is limited and measuring poverty at specific locality is scarce. The datasets contain the multidimensional poverty indicators, health, and nutrition, housing and settlement, water and sanitation, basic education from elementary to senior high school, income classifications, employment and livelihood, peace and order, summary of calamity occurrences experienced by residents, disaster risk reduction preparedness, figures of diagnostic analytics, tables of descriptive analytics, poverty analytics, measurement of decomposed poverty, summary of disaggregated configurations, graphs of predictive and prescriptive analytics, and population dynamics. This work is vital in analyzing poverty in rural and multidimensional approaches through poverty incidence, poverty gap, severity statistics, watts index, and classifications. It may also serve as a basis for measuring poverty from nearby regions and nations that use complete enumeration of its households and members. By utilizing the analyzed and processed data, further classifications and regressions can be done. It can be freely used by the government, private organizations, charitable institutions, businesses, academia, and researchers to target policies. An advantage of utilizing the dataset is to address multifaceted poverty that requires different interventions. It will facilitate the creation of programs to alleviate poverty and promote local economic development. |