Autor: |
Katarína Pukanská, Karol Bartoš, Juraj Gašinec, Roman Pašteka, Pavol Zahorec, Juraj Papčo, Pavel Bella, Erik Andrássy, Laura Dušeková, Diana Bobíková, Ľubomír Kseňak |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Frontiers in Environmental Science, Vol 12 (2024) |
Druh dokumentu: |
article |
ISSN: |
2296-665X |
DOI: |
10.3389/fenvs.2024.1484169 |
Popis: |
IntroductionDobšiná Ice Cave (Slovakia) has attracted the attention of many researchers since its discovery more than 150 years ago. Although the cave is located outside the high-mountain area, it hosts one of the largest volumes of underground perennial ice. The topographic mapping of this unique UNESCO Natural Heritage site has led to several historical surveys. In the last decades of rapid climate change, this natural formation has been subject to rapid changes that are dynamically affecting the shape of the ice body. Increased precipitation, the rise in year-round surface temperatures, and the gravity cause significant shape changes in the ice filling.MethodsThis paper describes modern technological tools to comprehensively survey and evaluate interannual changes in both the floor and wall of the underground ice body. Technologies such as digital photogrammetry, in combination with precise digital tacheometry and terrestrial laser scanning, make it possible to detect ice accumulation and loss, including the effect of sublimation due to airflow, as well as sliding movements of the ice body to the lower part of the cave. To get a comprehensive model of the ice volume, geophysical methods (microgravimetry and ground penetrating radar) have been added to determine the thickness of the floor ice in the upper parts of the cave in the last 2 years.ResultsBetween 2018 and 2023, the ice volume in certain sections of the cave decreased by up to 667 m³, with notable reductions in ice thickness ranging from 0.3 to 0.9 m in areas like the Small Hall and Collapsed Dome. The study also detected dynamic changes, such as the widening of the ice tunnel by 20 cm in some sections, and a vertical ice wall in Ruffinyi’s Corridor showed localized volume losses up to 9 m3 (between 2018 and 2023). Additional geophysical methods - microgravimetry and ground penetrating radar - revealed an average ice thickness ranging from 10 to 25 m.DiscussionThe paper not only highlights the current technological possibilities but also points out the limitations of these technologies and then sets out solutions with a proposal of technological procedures for obtaining accurate geodetic and geophysical data. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|