Statistical verifications and deep-learning predictions for satellite-to-ground quantum atmospheric channels

Autor: Phuc V. Trinh, Alberto Carrasco-Casado, Hideki Takenaka, Mikio Fujiwara, Mitsuo Kitamura, Masahide Sasaki, Morio Toyoshima
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Communications Physics, Vol 5, Iss 1, Pp 1-18 (2022)
Druh dokumentu: article
ISSN: 2399-3650
DOI: 10.1038/s42005-022-01002-1
Popis: This study confirms that a classical channel model can be used for describing random fluctuations in LEO-to-ground quantum atmospheric channels. It shows that practical engineering designs for future QKD missions can be conveniently conducted using the verified channel model, and that deep learning can predict channel fluctuations.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje