SURROGATE MODEL OPTIMIZATION OF A ‘MICRO CORE’ PWR FUEL ASSEMBLY ARRANGEMENT USING DEEP LEARNING MODELS

Autor: Whyte Andy, Parks Geoff
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: EPJ Web of Conferences, Vol 247, p 12003 (2021)
Druh dokumentu: article
ISSN: 2100-014X
DOI: 10.1051/epjconf/202124712003
Popis: This paper investigates the applicability of surrogate model optimization (SMO) using deep learning regression models to automatically embed knowledge about the objective function into the optimization process. This paper demonstrates two deep learning SMO methods for calculating simple neutronics parameters. Using these models, SMO returns results comparable with those from the early stages of direct iterative optimization. However, for this study, the cost of creating the training set outweighs the benefits of the surrogate models.
Databáze: Directory of Open Access Journals