Entropy solutions to noncoercive nonlinear elliptic equations with measure data

Autor: Shuibo Huang, Tong Su, Xinsheng Du, Xinqiu Zhang
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Electronic Journal of Differential Equations, Vol 2019, Iss 97,, Pp 1-22 (2019)
Druh dokumentu: article
ISSN: 1072-6691
Popis: Let $\Omega\subseteq \mathbb{R}^N$ be a bounded domain. In this article, we investigate the existence of entropy solutions to the nonlinear elliptic problem $$\displaylines{ -\hbox{div}\Big(\frac{|\nabla u|^{(p-2)} \nabla u+c(x)u^\gamma}{(1+|u|)^{\theta(p-1)}}\big) +\frac{b(x)|\nabla u|^\lambda}{(1+|u|)^{\theta(p-1)}}=\mu,\quad x\in\Omega, \cr u(x)=0,\quad x\in \partial\Omega, }$$ where $\mu$ is a diffuse measure with bounded variation on $\Omega$, $0\leq\theta
Databáze: Directory of Open Access Journals