Autor: |
David L. Hölscher, Nassim Bouteldja, Mehdi Joodaki, Maria L. Russo, Yu-Chia Lan, Alireza Vafaei Sadr, Mingbo Cheng, Vladimir Tesar, Saskia V. Stillfried, Barbara M. Klinkhammer, Jonathan Barratt, Jürgen Floege, Ian S. D. Roberts, Rosanna Coppo, Ivan G. Costa, Roman D. Bülow, Peter Boor |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Nature Communications, Vol 14, Iss 1, Pp 1-14 (2023) |
Druh dokumentu: |
article |
ISSN: |
2041-1723 |
DOI: |
10.1038/s41467-023-36173-0 |
Popis: |
Pathology diagnostics still rely on tissue morphology assessment by trained experts. Here, the authors perform deep-learning-based segmentation followed by large-scale feature extraction of histological images, i.e., next-generation morphometry, to enable outcome-relevant and disease-specific pathomics analysis of non-tumor kidney pathology. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|