Autor: |
Kwan Yeop Lee, Dongchul Lee, Zachary B. Kagan, Dong Wang, Kerry Bradley |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Biomedicines, Vol 9, Iss 5, p 568 (2021) |
Druh dokumentu: |
article |
ISSN: |
2227-9059 |
DOI: |
10.3390/biomedicines9050568 |
Popis: |
New strategies for spinal cord stimulation (SCS) for chronic pain have emerged in recent years, which may work better via different analgesic mechanisms than traditional low-frequency (e.g., 50 Hz) paresthesia-based SCS. To determine if 10 kHz and burst SCS waveforms might have a similar mechanistic basis, we examined whether these SCS strategies at intensities ostensibly below sensory thresholds would modulate spinal dorsal horn (DH) neuronal function in a neuron type-dependent manner. By using an in vivo electrophysiological approach in rodents, we found that low-intensity 10 kHz SCS, but not burst SCS, selectively activates inhibitory interneurons in the spinal DH. This study suggests that low-intensity 10 kHz SCS may inhibit pain-sensory processing in the spinal DH by activating inhibitory interneurons without activating DC fibers, resulting in paresthesia-free pain relief, whereas burst SCS likely operates via other mechanisms. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|