Scaling Conjecture Regarding the Number of Unknots among Polygons of N≫1 Edges
Autor: | Alexander Y. Grosberg |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Physics, Vol 3, Iss 3, Pp 664-668 (2021) |
Druh dokumentu: | article |
ISSN: | 2624-8174 |
DOI: | 10.3390/physics3030039 |
Popis: | The conjecture is made based on a plausible, but not rigorous argument, suggesting that the unknot probability for a randomly generated self-avoiding polygon of N≫1 edges has only logarithmic, and not power law corrections to the known leading exponential law: Punknot(N)∼exp−N/N0+o(lnN) with N0 being referred to as the random knotting length. This conjecture is consistent with the numerical result of 2010 by Baiesi, Orlandini, and Stella. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |