A Deep Learning Approach to Improve the Control of Dynamic Wireless Power Transfer Systems

Autor: Manuele Bertoluzzo, Paolo Di Barba, Michele Forzan, Maria Evelina Mognaschi, Elisabetta Sieni
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Energies, Vol 16, Iss 23, p 7865 (2023)
Druh dokumentu: article
ISSN: 1996-1073
DOI: 10.3390/en16237865
Popis: In this paper, an innovative approach for the fast estimation of the mutual inductance between transmitting and receiving coils for Dynamic Wireless Power Transfer Systems (DWPTSs) is implemented. To this end, a Convolutional Neural Network (CNN) is used; an image representing the geometry of two coils that are partially misaligned is the input of the CNN, while the output is the corresponding inductance value. Finite Element Analyses are used for the computation of the inductance values needed for CNN training. This way, thanks to a fast and accurate inductance estimated by the CNN, it is possible to properly manage the power converter devoted to charge the battery, avoiding the wind up of its controller when it attempts to transfer power in poor coupling conditions.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje