Autor: |
Shunhu Hou, Yaoyao Dong, Yuhai Li, Qingqing Yan, Mengtao Wang, Shengliang Fang |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 13, Iss 1, Pp 1-19 (2023) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-023-37165-2 |
Popis: |
Abstract Automatic modulation recognition (AMR) is a critical technology in spatial cognitive radio (SCR), and building high-performance AMR model can achieve high classification accuracy of signals. AMR is a classification problem essentially, and deep learning has achieved excellent performance in various classification tasks. In recent years, joint recognition of multiple networks has become increasingly popular. In complex wireless environments, there are multiple signal types and diversity of characteristics between different signals. Also, the existence of multiple interference in wireless environment makes the signal characteristics more complex. It is difficult for a single network to accurately extract the unique features of all signals and achieve accurate classification. So, this article proposes a time–frequency domain joint recognition model that combines two deep learning networks (DLNs), to achieve higher accuracy AMR. A DLN named MCLDNN (multi-channel convolutional long short-term deep neural network) is trained on samples composed of in-phase and quadrature component (IQ) signals, to distinguish modulation modes that are relatively easy to identify. This paper proposes a BiGRU3 (three-layer bidirectional gated recurrent unit) network based on FFT as the second DLN. For signals with significant similarity in the time domain and significant differences in the frequency domain that are difficult to distinguish by the former DLN, such as AM-DSB and WBFM, FFT (Fast Fourier Transform) is used to obtain frequency domain amplitude and phase (FDAP) information. Experiments have shown that the BiGUR3 network has superior extraction performance for amplitude spectrum and phase spectrum features. Experiments are conducted on two publicly available datasets, the RML2016.10a and RML2016.10b, and the results show that the overall recognition accuracy of the proposed joint model reaches 94.94% and 96.69%, respectively. Compared to a single network, the recognition accuracy is significantly improved. At the same time, the recognition accuracy of AM-DSB and WBFM signals has been improved by 17% and 18.2%, respectively. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|